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We present a cellular automaton �CA� model for simulating the complex dynamics of stock markets. Within
this model, a stock market is represented by a two-dimensional lattice, of which each vertex stands for a trader.
According to typical trading behavior in real stock markets, agents of only two types are adopted: fundamen-
talists and imitators. Our CA model is based on local interactions, adopting simple rules for representing the
behavior of traders and a simple rule for price updating. This model can reproduce, in a simple and robust
manner, the main characteristics observed in empirical financial time series. Heavy-tailed return distributions
due to large price variations can be generated through the imitating behavior of agents. In contrast to other
microscopic simulation �MS� models, our results suggest that it is not necessary to assume a certain network
topology in which agents group together, e.g., a random graph or a percolation network. That is, long-range
interactions can emerge from local interactions. Volatility clustering, which also leads to heavy tails, seems to
be related to the combined effect of a fast and a slow process: the evolution of the influence of news and the
evolution of agents’ activity, respectively. In a general sense, these causes of heavy tails and volatility cluster-
ing appear to be common among some notable MS models that can confirm the main characteristics of
financial markets.
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I. INTRODUCTION

The complex dynamics of financial markets can be char-
acterized by some “stylized facts,” which are common across
many financial instruments, markets, and time horizons.
Most of them are counterintuitive and contrary to the expec-
tations of traditional financial theories. These stylized facts
have been observed or discussed in many independent stud-
ies �1–7�. On long time scales �typically a week or longer�,
empirical distributions of financial return1 generally fit the
Gaussian distribution. However, most financial returns over
short time scales are described well by a non-Gaussian
�heavy-tailed or fat-tailed� distribution. A commonly used,
although not rigorous, criterion for the normality of a distri-
bution is its kurtosis �k�: k=3 corresponds to a Gaussian
distribution, whereas k�3 indicates a so-called leptokurtic
distribution with a sharp peak and heavy tails. The kurtosis
of financial returns is far from that of a Gaussian distribution.
For instance, our estimate for the kurtosis of Standard and
Poor‘s 500 �S&P 500�2 daily returns over the period June
1950 to June 2005 is around 38. Figure 1�a� shows the dis-

tribution of these returns, together with a Gaussian probabil-
ity density function �PDF� and a Lorentzian PDF for com-
parison. Clearly, daily returns of S&P 500 follow a non-
Gaussian �fat-tailed� distribution, implying a greater
frequency of extreme events than would be expected if they
followed a normal distribution. However, the variance of the
distribution is finite, whereas that of a Lorentz distribution
�or a stable Lévy distribution in general� is infinite. Further-
more, the autocorrelation function �ACF� of the daily returns
quickly converges to the noise range, whereas the corre-
sponding ACF of volatility3 decays slowly �see Fig. 1�b��.
The long-term autocorrelation of volatility is the reflection of
the phenomenon termed “volatility clustering”—high �posi-
tive or negative� returns tend to group together. Figure 1�c�
shows the time series of return over the period. In this figure,
the effect of volatility clustering is clearly illustrated.

Traditional �analytical� approaches in finance and eco-
nomics to study aggregative phenomena either are purely
macroscopic, or rely on top-down construction based on a
number of unrealistic assumptions mainly for the sake of
analytical tractability. Interactions between traders play no
role in the explanation of the phenomena �8�. In fact, markets
consist of a large number of agents. The interactions between1Generally, return is defined as R1

t+1=ln Pt+1−ln Pt, where R1
t+1 is

the return at time t+1, Pt is the price at time t, and so on. The basic
relation is R2

t+1= �Pt+1− Pt� / Pt. Sometimes, return is defined as price
change, R3

t+1= Pt+1− Pt. For high-frequency data, �R3
t+1�� Pt. Hence,

R1
t+1=ln�1+R3

t+1 / Pt��R3
t+1 / Pt=R2

t+1. Since R3
t is a fast variable and

Pt is a slow variable, R2
t �CR3

t , where the time dependence of C is
negligible. �See pp. 35–39 of Ref. �6�.� In our simulations,
�Pt+1− Pt�� Pt, so R1

t �R2
t �CR3

t . Within our cellular automation
model, these three indicators are alternatives to each other in ana-
lyzing the regularity in return distributions.

2An index is a sample list of stocks that is representative of a
whole stock market. It is used by investors to track the performance
of the stock market. Different methods are used for calculating the
price of an index. For example, the Dow Jones Industrial Average,
which contains 30 of the most influential companies in the United
States, is the price-based weighted average of the prices of the

included stocks. The Standard and Poor’s 500 Index �S&P 500�,
which includes 500 large publicly held companies that trade on
major U.S. stock exchanges, weights companies by market capitali-
zation �the overall value of a company’s stock on the market�.

3In the finance literature, volatility refers to the spread of asset
returns measured as the standard deviation of a sample of returns

over a period of time, i.e., �=��1/T��t=1
T �Rt− R̄�2, where T is the

length of the period, Rt is the return at time t, and R̄ is the average

return over the period. Substituting T=1 and R̄=0 into this equa-
tion, we obtain the absolute value of the return over a period of one
time unit, �r�, which is the most commonly used proxy for volatility
in practice. The other commonly used proxy is r2. We adopt �r� as
the volatility.
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them give rise to some macroeconomic regularity, which in
turn influences the microscopic interactions. This dynamics
is highly nonlinear and difficult to describe analytically.

In recent years, researchers have used microscopic simu-
lation �MS� to explore complex economic dynamics from the
bottom up. With MS, we study a complex system by directly
modeling its individual elements and their interactions. The
macroscopic behavior of the system will eventually emerge
from the microdynamics. MS has shown great potential for
more realistically modeling complex dynamical systems in
economics and finance �9�. In addition, it facilitates the test-
ing of existing economic or financial models and theories,
and the development of new theories and models �8�. At
present, most research on MS in finance focuses on under-
standing the characteristics of financial markets. To achieve
this objective, many MS models of financial markets have
been developed during the last decade.

However, as will be shown in Sec. II, researchers in the
field have not yet reached an agreement on explaining the
complex dynamics of financial markets. In addition, as re-
cently pointed out by Cont �10�, due to the complexity of the
existing �agent-based� models, it is often not clear which
aspects of the models are responsible for generating the styl-
ized facts, and whether all their ingredients are indeed re-
quired for explaining empirical observations.

In view of the facts, our general motivation is to develop
a MS model with a simple structure that can reproduce the
main stylized facts. More importantly, the causalities of the
dynamics generated by the model can be clearly identified.
In particular, we wish to confirm the main stylized facts
within a parsimonious cellular automaton �CA� framework
by dealing with local agent interactions and adopting simple
rules for representing agents’ behavior and a simple rule for

price updating. Building on the previous work presented in
Ref. �11�, we have constructed a particular CA model in
order to achieve these objectives. In our simulations, we
make sure that the model parameters have clear economic
relevance or interpretations.

In Sec. II, we first give an overview of the most notable
MS models of financial markets that have been reported in
the literature. We then give a detailed description of our CA
model in Sec. III, presenting it in order of increasing sophis-
tication so that the cause�s� of certain stylized fact�s� can be
identified at each level of sophistication. The simulation re-
sults of this model are shown in Sec. IV. Section V provides
a thorough investigation of the simulated dynamics through
computational experiments and mathematical analysis. In
Sec. VI, we present our conclusions.

II. OVERVIEW OF SOME MS MODELS

Bak et al. have developed a MS model �12� in which the
stock market contains fundamental value traders and noise
traders. The former set their prices based on a utility func-
tion, whereas the behavior of the latter is characterized by
drifting their prices to spot prices and copying other traders’
prices �imitation�. The strength of this drifting is proportional
to recent price variation. This mechanism is called “volatility
feedback.” This model can generate non-Gaussian distribu-
tions of return and volatility clustering. Its volatility feed-
back is similar to the mechanism of activity adjustment
within our proposed CA model, whereas other features are
different.

Within the model of Lux and Marchesi �13�, the market
consists of two groups of traders: fundamentalists and noise
traders. Fundamentalists buy �sell� the asset when its market
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FIG. 1. �a� Distribution of the
daily returns of S&P 500 over the
period from June 1950 to June
2005 �the points�, compared with
a Gaussian PDF �the curve that
decays faster� and a Lorentzian
PDF. A logarithmic scale is used
for the vertical axis. �b� Autocor-
relation function of the daily re-
turns �the lower line� and the cor-
responding ACF of volatility. �c�
Time series of the daily returns.
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price is below �above� its fundamental value. Noise traders
are further differentiated into optimists and pessimists. The
former believe in a rising market and buy the asset, whereas
the latter believe in a declining market and sell. Agents move
to the other group or subgroup when they believe that the
traders in that �sub�group are more successful �imitation or
herding�. Volatility clustering and fat-tailed distributions of
return can be produced by this model. While they are differ-
ent in other aspects, this model and our model are virtually
identical with regard to the behavior of fundamentalists and
price updating.

The model of Cont and Bouchaud �14� deals with homo-
geneous traders who group together in clusters through bi-
nary links between them. Such a structure is known as a
“random graph.” When certain conditions are satisfied, the
sizes of the clusters follow a power law distribution. The
members in each cluster coordinate their individual demands
to decide whether to buy, sell, or not trade �herding�. This
model gives rise to heavy-tailed probability distributions of
price change. However, it cannot generate volatility cluster-
ing. In principle, the price updating rule of this model is
identical to the corresponding rule within our model, al-
though these two models are very different in other aspects.

Cellular automata have been widely applied to study com-
plex phenomena in different fields such as physics, chemis-
try, biology, and social and economic sciences, etc. �15�. Re-
cently, some researchers have used cellular automata to
model financial markets for studying their complex dynam-
ics.

Iori has developed a CA-type model �16� that represents a
market as a two-dimensional lattice, of which each node is
an agent connected with four neighbors. The decision mak-
ing of each agent is driven by his own signal and the signals
of his neighbors �imitation�. When the aggregate signal ex-
ceeds his activation threshold, he will transact. The thresh-
olds are adjusted over time in response to price changes. This
model generates fat-tailed distributions of return and volatil-
ity clustering. Differing from each other in other aspects
�such as the nonlinear price updating rule employed here
compared to the simple rule used within our model�, both
this model and our model adopt only local interactions.

In �17�, Bartolozzi and Thomas present a stochastic CA
model of stock markets. In simulations using this model,
clusters of active traders form and evolve over time through
percolation dynamics �herding�. This process produces a
power law distribution of cluster size. Similar to the process
of a random Ising model, traders within each cluster ex-
change information and update their states. The model can
produce heavy tails and volatility clustering. The price up-
dating schemes adopted within this model and our model are
similar, although they are distinct in other aspects. One im-
portant difference is that within this model the traders act in
groups, whereas within our model long-range interactions
emerge from local interactions.

The model of Bandini et al. �11� adopts agents of two
types: fundamentalists and imitators. The former trade in
quantities proportional to the differences between their per-
ceived fundamental values of the asset and spot prices. The
latter follow the actions of their neighbors �imitation�. Ref-
erence �11� does not report any stylized facts. This model

and our CA model are similar with regard to the basic be-
havior of the agents and the price updating, whereas other
features are completely different.

We can see that, although most of these MS models can
confirm the stylized facts, they are different in agent types,
description of agents’ behavior, and ultimately market dy-
namics. However, it should be noticed that all these models
share a typical kind of behavior, namely, imitation. Some of
these models have been studied in Ref. �18�.

III. DESCRIPTION OF OUR CA MODEL

A. Modeling stock markets with cellular automata

We represent a stock market as a two-dimensional L�L
lattice. Each vertex of the lattice denotes an agent �trader�
who has a Moore neighborhood.4 Within our model, specu-
lative traders of only two types are adopted: fundamentalists
and imitators. All the agents trade in a single stock.

Fundamentalists are those traders who are informed of the
nature of the stock being traded and act according to its
fundamental value. They believe that the price of the stock
may temporarily deviate from, but will eventually return to,
the fundamental value. They therefore buy �sell� the asset
whenever its price is lower �higher� than the fundamental
value as perceived by them. In stock markets, there are also
some traders who do not know or do not care about funda-
mental values. Instead, they follow their acquaintances and
adopt the trading opinions of the majority. An agent of this
type is referred to as an imitator.

News influences both fundamentalists and imitators.
However, the ways news affects them are distinct in many
aspects. For example, fundamentalists pay relatively more
attention to news about the specific company that has issued
the stock, while imitators respond comparatively more fre-
quently to news related to the stock market as a whole.

We can adopt other types of agents to model stock mar-
kets more realistically. However, we think that the two kinds
of behavior discussed here are the most typical. The behavior
of other speculative traders has no obvious characteristics.
For example, we cannot find a general trait for chartists,
because, even using the same data, they may come to differ-
ent conclusions due to differences in the techniques used. We
can treat these agents as noise traders who randomly influ-
ence the price to different extents. However, because their
adoption within our model does not fundamentally influence
the dynamics characterized by the stylized facts, we choose
to ignore them.

The real fundamental value of a stock is related to the
current and prospective states of the company that has issued
the stock, among many other factors. The modeling of its
variations is beyond the scope of this work. Instead, we are
more interested in the reason�s� for excess volatility, i.e., the
extra factor�s� causing the price of a stock to be more volatile
than its real fundamental value. For this reason, we assume

4A Moore neighborhood NBi,j in our two-dimensional lattice is
defined as a set whose members are the eight cells surrounding a
given cell located at �i , j�, i.e., NBi,j = 	�i−1, j−1� , �i , j−1� , �i+1, j
−1� , �i−1, j� , �i+1, j� , �i−1, j+1� , �i , j+1� , �i+1, j+1�
.
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that the real fundamental value of the asset F is a constant.
�Tests showed that adding a drift to F to model the time
value of money does not influence the characteristics of the
returns. Drifts are therefore excluded from our model.�

B. Level I model

1. Fundamentalists

Empirically, the larger the difference between the price of
a stock and its fundamental value as perceived by a funda-
mentalist, the more likely he will trade it. We assume for the
moment that the fundamentalists perceive the real fundamen-
tal value accurately. We can then adopt Eq. �1� to express the
transaction quantity based on the current price level at time
t+1 of a fundamentalist when he is the ith agent, Vi,fu

t+1, and
his actual transaction quantity at the same time, qi,fu

t+1:

qi,fu
t+1 = Vi,fu

t+1

= F − Pt, �1�

where Pt is the price at time t. Notice that we have assumed
for the moment that the two transaction quantities are
equivalent. �The other factor determining �actual� transaction
quantities will be introduced in Sec. III D.�

2. Imitators

We take the average transaction quantity based on the
current price level of an imitator’s neighbors at the previous
time step as his corresponding quantity at present, i.e., Vi,im

t+1

= �Vi,nb
t �. We can then use Eq. �2� to express his �actual�

transaction quantity at time t+1, qi,im
t+1 :

qi,im
t+1 = Vi,im

t+1

= �Vi,nb
t � . �2�

C. Level II model

1. Fundamentalists

News influences fundamentalists’ perceptions of funda-
mental values. Positive �negative� news can cause them to
overestimate �undervalue� assets. Within our model, we as-
sume that at each time step all the fundamentalists perceive
the fundamental value identically. �We can alternatively as-
sume that their perceived values at each time step are nor-
mally distributed, without fundamentally influencing the dy-
namics.�

We express the perceived fundamental value at time t as
F� fu

t , in which � fu
t denotes the influence of the news at that

time. We assume that � fu
t =1+cfu� fu

t , where � fu
t is an inde-

pendent Gaussian random variable with mean 0 and standard
deviation 1 and cfu is a positive parameter indicating the
fundamentalists’ sensitivity to news. At this point, we have a
modified expression for the transaction quantity of a funda-
mentalist,

qi,fu
t+1 = Vi,fu

t+1

= F� fu
t+1 − Pt. �3�

2. Imitators

We assume that news influences all the imitators identi-
cally. �We can alternatively assume that the effects of news at
each time step are normally distributed, without fundamen-
tally influencing the dynamics.� Significant �unimportant�
news can make an imitator trade more �less� than his neigh-
bors, and vice versa. We reformulate the transaction quantity
of an imitator as

qi,im
t+1 = Vi,im

t+1

= �Vi,nb
t ��im

t+1, �4�

in which �im
t+1 indicates the influence of the news at time

t+1 and is equal to 1+cim�im
t+1, where �im

t is an independent
Gaussian random variable with mean 0 and standard devia-
tion 1 and cim is a positive parameter indicating the imitators’
sensitivity to news.

D. Level III model

A common strategy used by traders is to buy low and sell
high �BLASH�. It aims for capital gains by taking advantage
of changes in prices. Price fluctuations are therefore indis-
pensable for this strategy.

Based on the BLASH strategy, capitals of traders move
among different assets pursuing larger profits at lower risks.
When the price fluctuation level of a stock is at the two
extremes, i.e., very low and very high, the asset is the least
desirable: If it is very low, traders who hold the asset will not
be able to find an opportunity to sell it profitably and will not
even be able to cover their opportunity costs.5 If it is very
high, traders will consider the investment in the asset too
risky. Within the range between the two extremities, as the
price fluctuation level rises, the asset will be first more fa-
vorable and then, after a certain level, less attractive.

When a stock is more favorable compared to other alter-
natives, traders will trade it more frequently. We therefore
assume that the trading activity of the agents is equivalent to
the desirability of the stock. However, BLASH is a risky
approach itself, because there is no way to predict price
changes accurately. Frequently, traders just end up selling at
a loss. In order to reduce this risk, traders typically consider
previous price changes of a stock for a longer period.

We represent the price fluctuation level of a stock at time
t as

Lt =
1

k
�

i=t−k

t−1

�Pi − P̄�/P̄ , �5�

where k is the length of a period before t, Pi is the price of

the asset at time i in the period, and P̄ is the average price
over the period. �We can alternatively assume that agents
take different values of k that are normally distributed, with-
out fundamentally influencing the dynamics.�

For the sake of simplicity, we adopt a straightforward lin-
ear function for the trading activity of the agents,

5Opportunity cost, or cost of capital, is the rate of return that a
business could earn if it chose another investment with equivalent
risk �26�.
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Mt�Lt� = 
clL
t, Lt � Lm,

cl�− Lt + 2Lm� , Lt � Lm,
� �6�

where Lm is the fluctuation level where the stock becomes
less favorable and cl is a positive parameter. �Simulations
show that adopting other concave functions leads to similar
results.�

Within the level III model we consider that the �actual�
transaction quantity of an agent is the product of his trans-
action quantity based on the current price level and his cur-
rent trading activity. The transaction quantity of a fundamen-
talist is therefore

qi,fu
t+1 = Vi,fu

t+1Mt+1

= �F� fu
t+1 − Pt�Mt+1, �7�

whereas the transaction quantity of an imitator is

qi,im
t+1 = Vi,im

t+1 Mt+1

= �Vi,nb
t ��im

t+1Mt+1. �8�

Considering the fact that agents always have a number of
exceptional reasons to transact, we adopt a lower bound for
Mt.

E. Rule of price updating

The price is updated according to the following rule:

Pt+1 = Pt +
cpQt

N
, �9�

where Qt is the total transaction quantity or the excess de-
mand for the asset at time t and N is the number of traders.
Since Qt is proportional to N, we rescale it with N. We adopt
a positive parameter cp to indicate the sensitivity of the price
to the excess demand. Due to the fact that stock prices cannot
be negative, the lower bound of Pt is 0.

Equation �9� can be explained as the action of a market
maker6 to balance the supply and the demand of the stock. In
principle, however, it is merely the translation of the classic
theory of supply and demand stating that price will move
toward the point that equalizes supplied and demanded
quantities.7

IV. SIMULATION RESULTS

A. Simulation results of the level I model

In simulations using the level I model, we set an initial
price �P0=105� that deviates from the fundamental value
�F=100�. The number of agents is 1�104. Figure 2 displays
the price trajectories corresponding to two fractions of imi-
tators: �im=20% and 80%, respectively.

The parameter cp has an important impact on the price:
When its value is increased up to 1 while other parameters
are kept constant, the price process may start to switch from
a convergent process to a divergent one, depending on the
value of cp itself and the value of �im. We provide a theoret-
ical analysis of this issue in Sec. V. To model a stable market,
we adopt only those values of cp smaller than 1.

As shown in Fig. 2, although the level I model is not
completely identical to the model of Bandini et al. �11�, it
does generate similar price trajectories. Starting from an ini-
tial deviation from the fundamental value, the price either
directly converges to it, or fluctuates around it for some time
and eventually overlaps. Obviously, both models cannot pro-
duce sustained price movement. Since the price quickly dies
out, we cannot obtain any stylized facts by using the level I
model.

B. Simulation results of the level II model

Within the level II model, we have added random factors
� fu

t and �im
t , so that it can produce sustained price fluctua-

tions. When the fraction of imitators is set to 70%, we obtain
simulation results shown in Fig. 3. In our simulations, return
is represented by the difference between two successive
natural logarithms of price, i.e., the log-return is used.

We see that the level II model can generate a non-
Gaussian �fat-tailed� distribution of return, but is not able to
confirm another important stylized fact, namely, volatility
clustering. It therefore has the same problem presented by
the Cont-Bouchaud model �14�. Nevertheless, through simu-
lations using this model, we can further study how the frac-
tion of imitators influences the distribution of return. Figure
4 shows the results for different instances: �im=20%, 50%,
and 80%, respectively. If the fraction is small, returns will
follow a Gaussian distribution; increasing it enlarges the tails
of the return distribution.

6To ensure liquidity, many organized exchanges use market mak-
ers, individuals who maintain inventories of their chosen securities
and stand ready to buy or sell whenever the public wishes to sell or
buy.

7In 1890, Marshall published Principles of Economics �27�, in
which he discussed how both supply and demand interact to deter-
mine price. His supply-demand model has become one of the fun-
damental concepts of economics. According to the model, if all
other factors remain equal, the higher the price, the lower the quan-
tity demanded and the higher the quantity supplied, vice versa. In a
price �ordinate�–quantity �abscissa� chart the curve of demand is a
downward slope, and the supply relationship shows an upward
slope. Equilibrium occurs at the intersection point of the two
curves. In the chart, if straight lines are drawn instead of the more
general curves �the shapes of the curves do not change the general
relationships�, we immediately obtain Eq. �9�.
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FIG. 2. Price trajectories obtained through the simulation using
the level I model when �im=20% and 80%, respectively. The curve
that decays faster is of the first instance. The parameter settings
used are N=1�104, cp=0.5, F=100, and P0=105.
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C. Simulation results of the level III model

Within the level III model we have further added a
mechanism through which agents’ activity is adjusted over
time. Fixing �im to 70%, we obtain simulation results shown
in Fig. 5. �1� Figure 5�a� records the price process. Some
large “flights” can be observed, which correspond to large
�positive or negative� returns. �2� Figure 5�b� illustrates the
time series of return. The effect of volatility clustering is
clear. �3� Figure 5�c� shows the probability distribution of
return, together with a Gaussian PDF and a Lorentzian PDF
for comparison. The tails of the distribution are clearly
heavier than those of a Gaussian PDF. �4� Figure 5�d� dis-
plays the ACF of return �the lower curve� and that of vola-

tility. The former converges quickly to the noise range,
whereas the latter decays much more slowly. �5� Figure 5�e�
shows the time evolution of trading volume.8 �6� Figure 5�f�
illustrates the time evolution of trading activity. It is a slow
process in comparison with the fast evolution of the influ-
ence of news.9

These simulation results indicate that our CA model �level
III� is able to reproduce the main stylized facts. In addition,
as shown below, this model is robust with regard to the styl-
ized facts for wide ranges of the parameters.

Table I compiles the kurtosis values of the return distri-
butions for different values of �im, cim, and cfu, respectively.
We see that imitators have a strong influence on kurtosis,
while the relation between fundamentalists and kurtosis is
not explicit. Specifically, the fraction of imitators �im and the
sensitivity of imitators to news cim are positively correlated
with kurtosis. When either of them increases to a certain
level, kurtosis suddenly becomes very large, implying that
the system becomes unstable. For example, when cim=0.9,
we obtain a price pattern with frequent dramatic “flights” and
a time series of return with many striking strokes. These are
shown in Fig. 6.

Keeping other parameters constant and adopting different
values of k, we obtain the autocorrelation functions of vola-

8Volume is defined as the sum of absolute aggregate demand and
absolute aggregate supply.

9Here, we define the rate of time evolution of a variable X
as ��	X� / �X�� /	t, where 	X is the change of X within time incre-
ment 	t.
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FIG. 3. Simulation results of
the level II model when �im

=70%. �a� Normalized return. �b�
Distribution of return �the scale of
the vertical axis is logarithmic�.
�c� Autocorrelation function of re-
turn and that of volatility. The
parameter settings used are
N=1�104, cp=0.005, F=100,
cfu=0.2, cim=0.7, and P0=100.
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tility shown in Fig. 7�a�. When k is smaller than 50, ACFs of
volatility quickly drop to the noise range and the effects of
volatility clustering are correspondingly negligible. Volatility
clustering becomes significant when k is increased to around
100. The importance of k to volatility clustering will further
manifest itself in Sec. V D.

Choosing three values for the number of agents �lattice
sizes� and keeping other parameters constant, simulations
give the ACFs of volatility shown in Fig. 7�b�. All these
ACFs are qualitatively similar to that of S&P 500 shown in
Fig. 1�b�, indicating that the model can reproduce the styl-
ized facts not only for markets with small numbers of agents,
but also for markets with many agents. At this point, the
model differs from some MS models that behave realistically
only for limited numbers but not large numbers of traders
�22�.

V. DISCUSSION: THE MARKET DYNAMICS REVEALED
BY OUR CA MODEL

A. Long-range interactions can form from local interactions

In this section, for the sake of simplicity, we take a one-
dimensional version of our CA model to derive analytical
expressions. An agent located at i then has two neighbors at
i−1 and i+1, respectively. Statistically, the total quantity at
time t+1 can be expressed as

Qt+1 = �
i=1

N

qi,�·�
t+1 = �

i=1

N

�uiqi,fu
t+1 + �1 − ui�qi,im

t+1 � , �10�

where ui is determined in the following way: We sample a
variable � �0���1� that is uniformly distributed. If
0���� fu, ui=1, else ui=0. Here, � fu is the fraction of fun-
damentalists.
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FIG. 5. Simulation results of
the level III model when 70% of
the agents are imitators. �a� Price.
�b� Normalized return. �c� Distri-
bution of return �the scale of the
vertical axis is logarithmic�. �d�
Autocorrelation function of return
�the lower curve� and that of vola-
tility. �e� Trading volume. �f�
Trading activity. The parameter
settings used are N=1�104, cp

=0.05, F=100, cfu=0.2, cim=0.7,
P0=100, k=400, cl=20, and Lm

=0.01. The lower bound of Mt is
0.05.
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The terms qi,fu
t+1 and qi,im

t+1 in Eq. �10� are determined by
Eqs. �7� and �8�, respectively. However, because Mt changes
much more slowly than Qt, we can consider the former as a
constant to study the basic dynamics of the latter. We set
M�·�=1; then qi,fu

t+1 and qi,im
t+1 are respectively determined by

Eq. �3� and Eq. �4�. Therefore,

qi,im
t+1 = �im

t+1�1

2
��Vi−1,�·�

t + Vi+1,�·�
t �

= �im
t+1�1

2
�	�ui−1Vi−1,fu

t + �1 − ui−1�Vi−1,im
t �

+ �ui+1Vi+1,fu
t + �1 − ui+1�Vi+1,im

t �
 . �11�

Similarly, the terms Vi−1,im
t and Vi+1,im

t in Eq. �11� can be
respectively expressed as

Vi−1,im
t = �im

t �1

2
�	�ui−2Vi−2,fu

t−1 + �1 − ui−2�Vi−2,im
t−1 �

+ �uiVi,fu
t−1 + �1 − ui�Vi,im

t−1 �
 �12�

and

Vi+1,im
t = �im

t �1

2
�	�uiVi,fu

t−1 + �1 − ui�Vi,im
t−1 �

+ �ui+2Vi+2,fu
t−1 + �1 − ui+2�Vi+2,im

t−1 �
 . �13�

Following the same scheme, we can further express the
terms Vi−2,im

t−1 , Vi,im
t−1 , and Vi+2,im

t−1 in Eqs. �12� and �13� in terms
of the corresponding quantities at time step t−2 of the neigh-
bors of the agents located at i−2, i, and i+2, respectively,
and so on. Basically, in this way, we can replace each imita-
tor’s transaction quantity based on the current price level at
each time step with the fundamentalists’ corresponding quan-
tities at the preceding time steps, noting that V�·�,fu

t =Vi,fu
t .

After substitutions, we have

Qt+1 = �
i=1

N

�Ai
t+1Vi,fu

t+1 + Ai
t��im

t+1�Vi,fu
t + Ai

t−1��im
t+1�im

t �Vi,fu
t−1

+ Ai
t−2��im

t+1�im
t �im

t−1�Vi,fu
t−2 + ¯

+ Ai
t−���im

t+1�im
t �im

t−1
¯ �im

t−�+1�Vi,fu
t−� + ¯ � , �14�

where �=−1,0 ,1 ,2 , . . .. The first few instances of Ai
t−� are

Ai
t+1 = ui,

Ai
t =

1

2
��1 − ui�ui−1 + �1 − ui�ui+1� ,

Ai
t−1 =

1

22 ��1 − ui��1 − ui−1�ui−2 + �1 − ui��1 − ui−1�ui

+ �1 − ui��1 − ui+1�ui + �1 − ui��1 − ui+1�ui+2� ,

Ai
t−2 =

1

23 ��1 − ui��1 − ui−1��1 − ui−2�ui−3 + �1 − ui��1 − ui−1�

��1 − ui−2�ui−1 + �1 − ui��1 − ui−1��1 − ui�ui−1

+ �1 − ui��1 − ui−1��1 − ui�ui+1 + �1 − ui��1 − ui+1�

��1 − ui�ui−1 + �1 − ui��1 − ui+1��1 − ui�ui+1 + �1 − ui�

��1 − ui+1��1 − ui+2�ui+1 + �1 − ui��1 − ui+1�

��1 − ui+2�ui+3� .

In each product within Ai
t−�, the sequence of 1−ui terms

indicates the propagation of imitation over time �backward�
and space �agents�. However, if at least one of the terms is

TABLE I. Kurtosis values of the return distributions produced
by the level III model for increasing values of �im, cim, and cfu,
respectively. The parameter settings used are N=1�104, cp=0.05,
F=100, cfu=0.2, cim=0.7, P0=100, k=400, cl=20, and Lm=0.01.
The lower bound of Mt is 0.05.

�im Kurtosis cim Kurtosis cfu Kurtosis

0% 4.44 0.1 4.36 0.1 15.53

10% 4.36 0.2 5.37 0.2 17.22

20% 4.57 0.3 6.37 0.3 42.94

30% 5.33 0.4 7.44 0.4 37.28

40% 6.07 0.5 8.60 0.5 35.39

50% 6.64 0.6 10.55 0.6 46.71

60% 8.51 0.7 17.22 0.7 43.98

70% 17.22 0.8 32.57 0.8 42.11

80% 69.33 0.9 119.14 0.9 35.79

90% 190.46 1.0 422.77 1.0 30.72
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FIG. 6. Simulation results of
the level III model when �im

=70% and cim=0.9. �a� Price. �b�
Normalized return. The parameter
settings used are N=1�104, cp

=0.05, F=100, cfu=0.2, P0=100,
k=400, cl=20, and Lm=0.01. The
lower bound of Mt is 0.05.
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equal to zero, which corresponds to a fundamentalist, the
whole product will be zero. As the fraction of imitators �fun-
damentalists� increases �decreases�, some Ai

t−� terms with
larger � values are greater than zero.

The imitation chains show that long-range interactions
can form from local imitations. In the resultant networks,
each agent is influenced, directly or indirectly, by some other
near or remote agents. Here, the strengths and time lags of
influence differ. In this respect, our CA model is different
from the Cont-Bouchaud model, where any two agents can
be directly linked, and agents in a group behave identically.
It is also distinct from the model of Bartolozzi et al., within
which agents in a cluster influence each other with an
equivalent strength.

B. Price and volatility are mean reverting

Fundamentalists behave according to price while imitators
follow other agents but do not directly respond to price. We
therefore argue that it is the fundamentalists’ behavior that
determines the price trend. This argument can be confirmed
by our simulations: If � fu=0 �all the agents are imitators�,
price fluctuations die out; in other cases we obtain price tra-
jectories similar in shape but distinct only in amplitude.

Therefore, for the sake of simplicity, we can take the spe-
cial instance that all the agents are fundamentalists to study
the basic dynamics of the price. In such an instance, � fu=1;
hence u�·�=1. Then, Eq. �14� gives

Qt = NVi,fu
t

= N�F� fu
t − Pt−1� . �15�

The noise term � fu
t is indispensable for a sustained price

process, but is not responsible for any regularity in price
trends. We therefore set � fu

�·�=1 for the sake of simplicity.
Then, Eq. �15� becomes

Qt = N�F − Pt−1� . �16�

Equation �9� gives

Qt = � N

cp
��Pt+1 − Pt� . �17�

Substituting Eq. �17� into Eq. �16�, we obtain

Pt+1 − Pt + cpPt−1 = cpF . �18�

Equation �18� is a second-order difference equation. De-
pending on the value of cp, the price can follow a monotoni-
cally decaying process �cp
0.25�, a damped fluctuating pro-
cess �0.25
cp
1�, or an explosive fluctuating process
�cp�1�. Figure 8 shows the three typical price trajectories
when the initial price is 105. In all these instances, the price
is mean reverting. Some researchers have studied the mean-
reverting nature of price processes for different behavioral
types, as well as different stabilizing-destabilizing endog-
enous mechanisms of financial markets �19–21�.

To analyze the process of volatility generated by our
model, we need to consider the mechanism as well as the
noise. First of all, we have assumed that the noise, which
causes the volatility, follows an independent Gaussian ran-
dom process. Within this process, those values more close to
the mean have higher probabilities. Second, by examining
Eqs. �5� through �9�, we can recognize that when Lt is
smaller �greater� than Lm, a positive �negative� feedback loop
will form between Lt and Mt; namely, small �large� values of
Lt tend to be enlarged �lessened�. Therefore, the nature of the
noise, the trading behavior of the agents, and the rule of price
updating ensure that the volatility also follows a mean-
reverting process.

C. Heavy tails due to large price variations
are caused by imitations

In this section, for the sake of simplicity, we adopt price
change as return, i.e., Rt+1= Pt+1− Pt. According to Eq. �9�,
we can then examine Eq. �14� in order to investigate the
cause of the resultant non-Gaussian return distributions.

In the simulations demonstrated in Sec. IV B, if � fu=1,
we cannot generate fat tails. In this case, the total quantity is
described by Eq. �15�, a special instance of Eq. �14� when all
the terms with a product of �im

t terms are equal to zero.
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FIG. 7. Autocorrelation functions of volatility produced by the level III model when �im=70%. �a� ACFs when k=10 �the lowest curve�,
100 �the second lowest�, 300 �the highest�, and 500 �the second highest�, respectively. �b� ACFs when N=10�10 �the middle curve�,
100�100 �the highest one�, and 1000�1000 �the lowest one�, respectively. The parameter settings used are N=1�104, cp=0.05, F=100,
cfu=0.2, cim=0.7, P0=100, k=400, cl=20, and Lm=0.01. The lower bound of Mt is 0.05.
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Heavy tails are generated when � fu
1 and some of these
terms are present in Eq. �14�. We therefore suppose that it is
the multiplication of the various �im

t terms in different �im
t

terms that is responsible for the non-Gaussian distributions,
although all these terms themselves follow a Gaussian distri-
bution.

To confirm this supposition, we define a simple reference
model:

Ht = ��t + �1 − ���t�t−1�t−2, �19�

where �t is an independent Gaussian random variable with
mean 0 and standard deviation 1 and � is a parameter. Recall
that, in Eq. �14�, �im

t =1+cim�im
t . Since Eq. �19�, as with Eq.

�14�, deals with the sum of products of Gaussian terms, it
represents the basic structure of the latter.

Figure 9 presents the experimental probability distribu-
tions of Ht obtained when choosing different values of � for
comparison: 1, 0.5, and 0. In this figure we see that, when �
decreases, the distribution of Ht gradually changes from be-
ing pure Gaussian to being very fat-tailed non-Gaussian.
Thus, the more the product of �t terms is weighted, the
heavier the tails of the consequent distribution. From the
discussion in Sec. V A we know that, if � fu is small, the
products of more �im

t factors in Eq. �14� will have more
weight. This experiment therefore explains the regularity dis-
cussed in Secs. IV B and IV C: Larger fractions of imitators
correspond to return distributions with heavier tails. In addi-
tion, products of �im

t terms give rise to continued products of
cim. The multiplication of cim explains the exponential
growth of kurtosis following the increase of cim, as shown in
Sec. IV C.

D. Volatility clustering is related to the evolution
of trading activity

According to Eq. �9� and the definition of return adopted
in this section,

Rt+1 � Qt. �20�

Since Mt changes much more slowly than Qt, we have
Mt�Mt−1� ¯ �Mt−� for small values of �. �Note that the
analysis here is by no means rigorous.� Then, for a small

value of �, according to Eqs. �7�, �8�, and �10�, as well as the
scheme conveyed by Eqs. �11�–�13�, Eq. �20� gives

Rt+1 � MtUt, �21�

where

Ut = �
i=1

N

�Ai
t�F� fu

t − Pt−1� + Ai
t−1��im

t ��F� fu
t−1 − Pt−2� + ¯

+ Ai
t−�−1��im

t �im
t−1

¯ �im
t−���F� fu

t−�−1 − Pt−�−2�� .

In Eq. �21�, Mt is a factor that emerges from the agents’
trading and in turn reinforces it. Because it changes more
slowly than Ut, successive values of �Rt+1� are positively
correlated with each other. However, consecutive values
of Rt+1 are only weakly correlated due to the fast variation in
its sign, which is caused by the fast variation in the sign
of Ut due to news and the mean-reverting nature of the
price. These explain the stylized facts of long-term autocor-
relation of volatility and short-term autocorrelation of
return.

E. The regularity can be identified
within some other MS models

In a general sense, the MS models discussed in Sec. II
that can confirm the stylized facts agree with our CA model
on the origins of large price variations and volatility cluster-
ing.

Although explaining imitation from different angles, all
these MS models and our CA model show that the fraction of
abnormally large price variations is much larger when agents
imitate each other than when they are mutually independent.
In the latter instance and in the limit of a large number of
agents, returns follow a Gaussian distribution.

Within these MS models and our CA model, we can ulti-
mately attribute volatility clustering to the evolution of
agents’ activity, although the corresponding processes of the
models that indicate activity are quite distinct. �Notice that
all these processes are positively correlated with the evolu-
tion of trading volume.� These processes are, respectively,
the evolution of volatility �Bak et al. �12��, the development
of the fraction of noise traders �Lux et al. �13��, the evolution
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of agents’ activation thresholds �Iori �16��, the percolation
process �Bartolozzi et al. �17��, and the progression of the
desirability of an asset �our CA model�. In addition, these
processes are slower than their corresponding “source” pro-
cesses. Therefore, volatility clustering generated by these
MS models and our CA model is the combined effect of two
processes on different time scales.

In the literature, on the one hand, there is not yet a com-
mon agreement on the origins of the stylized facts �10�. On
the other hand, various analytical models for describing the
phenomena, e.g., generalized autoregressive conditional het-
eroskedasticity �GARCH� models,10 stochastic volatility
models,11 and a recently published Itô-Langevin model de-
scribed in �25�, do not provide explicit economic explana-
tions for the underlying dynamics. The regularity discussed

here can help us achieve a more accurate understanding of
the complex dynamics of stock markets.

VI. CONCLUSION

In this paper, a cellular automaton model for simulating
the complex dynamics of stock markets has been described.
The model can confirm the main stylized facts observed in
empirical financial time series. Our simulations and analysis
suggest that price and volatility are mean reverting. Long-
range agent interactions, which are responsible for large
price variations, can form from local interactions. Volatility
clustering is associated with the variation in agents’ trading
activity, a slower process compared with the variation in the
influence of news. Heavy-tailed distributions of return are
related to both large price variations and volatility clustering.
Finally, these non-Gaussian distributions are produced by
agents’ behavior in response to the arrival of news, even
though the influence of news is assumed to follow a Gauss-
ian random process.
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